Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

نویسندگان

  • Dinesh Acharya
  • N. V. Subba Reddy
  • Krishnamoorthi Makkithaya
چکیده

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods. Keywords—Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifier Fusion Method to Recognize Handwritten Kannada Numerals

Optical Character Recognition (OCR) is one of the important fields in image processing and pattern recognition domain. Handwritten character recognition has always been a challenging task. Only a little work can be traced towards the recognition of handwritten characters for the south Indian languages. Kannada is one such south Indian language which is also one of the official language of India...

متن کامل

Combined Classifiers in Recognition of Handwritten Kannada Numerals: a Hybrid Approach

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals using both unsupervised and supervised classifiers. Four different types of structural features, namely, direction frequency code, water reservoir, end points and average boundary len...

متن کامل

Data fusion based framework for the recognition of Isolated Handwritten Kannada Numerals

combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...

متن کامل

Recognition of Isolated Handwritten Kannada Numerals based on Decision Fusion Approach

combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...

متن کامل

Offline Handwritten Kannada Numerals Recognition

Handwritten Character Recognition (HCR) is one of the essential aspect in academic and production fields. The recognition system can be either online or offline. There is a large scope for character recognition on hand written papers. India is a multilingual and multi script country, where eighteen official scripts are accepted and have over hundred regional languages. Recognition of unconstrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012